Flexural stiffness of feather shafts: geometry rules over material properties.

نویسندگان

  • Thomas Bachmann
  • Jens Emmerlich
  • Werner Baumgartner
  • Jochen M Schneider
  • Hermann Wagner
چکیده

Flight feathers of birds interact with the flow field during flight. They bend and twist under aerodynamic loads. Two parameters are mainly responsible for flexibility in feathers: the elastic modulus (Young's modulus, E) of the material (keratin) and the geometry of the rachises, more precisely the second moment of area (I). Two independent methods were employed to determine Young's modulus of feather rachis keratin. Moreover, the second moment of area and the bending stiffness of feather shafts from fifth primaries of barn owls (Tyto alba) and pigeons (Columba livia) were calculated. These species of birds are of comparable body mass but differ in wing size and flight style. Whether their feather material (keratin) underwent an adaptation in stiffness was previously unknown. This study shows that no significant variation in Young's modulus between the two species exists. However, differences in Young's modulus between proximal and distal feather regions were found in both species. Cross-sections of pigeon rachises were particularly well developed and rich in structural elements, exemplified by dorsal ridges and a well-pronounced transversal septum. In contrast, cross-sections of barn owl rachises were less profiled but had a higher second moment of area. Consequently, the calculated bending stiffness (EI) was higher in barn owls as well. The results show that flexural stiffness is predominantly influenced by the geometry of the feathers rather than by local material properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.

If patient-specific finite element models of the spine could be developed, they would offer enormous opportunities in the diagnosis and management of back problems. Several generic models have been developed in the past, but there has been very little detailed examination of the sensitivity of these models' characteristics to the input parameters. This relationship must be thoroughly understood...

متن کامل

Comparative Analysis of the Flexural Stiffness of Pinniped Vibrissae

Vibrissae are important components of the mammalian tactile sensory system and are used to detect vibrotactile stimuli in the environment. Pinnipeds have the largest and most highly innervated vibrissae among mammals, and the hair shafts function as a biomechanical filter spanning the environmental stimuli and the neural mechanoreceptors deep in the follicle-sinus complex. Therefore, the materi...

متن کامل

Analysis of Laterally Loaded Long or Intermediate Drilled Shafts of Small or Large Diameter in Layered Soil

Strain wedge (SW) model formulation has been used, in previous work, to evaluate the response of a single pile or a group of piles (including its pile cap) in layered soils to lateral loading. The SW model approach provides appropriate prediction for the behavior of an isolated pile and pile group under lateral static loading in layered soil (sand and/or clay). The SW model analysis covers the ...

متن کامل

Flexural stiffness patterns of butterfly wings (Papilionoidea)

A flying insect generates aerodynamic forces through the active manipulation of the wing and the “passive” properties of deformability and wing shape. To investigate these “passive” properties, the flexural stiffness of dried forewings belonging to 10 butterfly species was compared to the butterflies’ gross morphological parameters to determine allometric relationships. The results show that fl...

متن کامل

Effects of Reinforcement Geometry on Strength and Stiffness in Adhesively Bonded Steel-Timber Flexural Beams

A finite element model is developed to analyse, as a function of volume fraction, the effects of reinforcement geometry and arrangement within a timber beam. The model is directly validated against experimental equivalents and found to never be mismatched by more than 8% in respect to yield strength predictions. Yield strength increases linearly as a function of increasing reinforcement volume ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 215 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2012